Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy

نویسندگان

  • Shuyi Zhang
  • Chen Chen
  • Matteo Cargnello
  • Paolo Fornasiero
  • Raymond J Gorte
  • George W Graham
  • Xiaoqing Pan
چکیده

The exceptional activity for methane combustion of modular palladium-ceria core-shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core-shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium-ceria core-shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium-ceria core-shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Characterization of Alumina-Supported Rh Catalysts: Effects of Ceriation and Zirconiation by using Metal–Organic Precursors

The effects of the addition of ceria and zirconia on the structural properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ-Al2O3) are studied. Ceria and zirconia are deposited by using two preparation methods. Method I involves the deposition of ceria on γ-Al2O3 from Ce(acac)3, and the rhodium metal is subsequently added, whereas method II is based on a controlled surface reaction techn...

متن کامل

Structural, Optical and Magnetic Feature of Core-Shell Nanostructured Fe3O4@GO in Photocatalytic Activity

In this paper, structural, magnetic, optical, and photocatalytic properties of core-shell structure Fe3O4@GO nanoparticles have been compared with Fe3O4 nanoparticles in the degradation of methyl blue and methyl orange. For this purpose, GO nanosheets were wrapped around the APTMS-Fe3O4 nanoparticles and then charact...

متن کامل

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

Using the Palladium as core and Platinum as shell for ORR

In this work, electrocatalyst with core-shell structure (Pd as core and Pt as shell on VulcanXC-72R) was synthesis. Not only this structure can reduce the amount of platinum but it also can increase the gas diffusion electrode (GDE) performance in cathode reaction (Oxygen Reduction Reaction or ORR) of polymer electrolyte membrane fuel cell (PEMFC). To this meaning, one series of electrocatalyst...

متن کامل

Effect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors

The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015